Potential room-temperature multiferroicity in cupric oxide under high pressure

نویسندگان

چکیده

CuO, known to be multiferroic (MF) from ${T}_{L}\phantom{\rule{4pt}{0ex}}=\phantom{\rule{4pt}{0ex}}213\phantom{\rule{4pt}{0ex}}\mathrm{K}$ ${T}_{N}\phantom{\rule{4pt}{0ex}}=\phantom{\rule{4pt}{0ex}}230\phantom{\rule{4pt}{0ex}}\mathrm{K}$ at ambient pressure, has been the subject of debates about its ability exhibit multiferroicity room temperature (RT) under high hydrostatic pressure. Here we address this question based on theoretical and experimental investigations. The influence pressure ${T}_{L}$ ${T}_{N}$ estimated ab initio calculations combined with classical Monte-Carlo simulations a quasi-1D antiferromagnetic analytical model. From side, electric permittivity anomalies related ferroelectric transitions have followed dielectric measurements single crystals up 6.1 GPa. We show that below which MF state forms increases linearly higher hitherto supposed, indeed our calculations, should exceed RT above 20

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Room-temperature spin-spiral multiferroicity in high-pressure cupric oxide

Multiferroic materials, in which ferroelectric and magnetic ordering coexist, are of fundamental interest for the development of multi-state memory devices that allow for electrical writing and non-destructive magnetic readout operation. The great challenge is to create multiferroic materials that operate at room temperature and have a large ferroelectric polarization P. Cupric oxide, CuO, is p...

متن کامل

Room temperature multiferroicity in Bi4.2K0.8Fe2O9+δ

Magnetoelectric multiferroics are materials that have coupled magnetic and electric dipole orders, which can bring novel physical phenomena and offer possibilities for new device functions. In this report, single-crystalline Bi(4.2)K(0.8)Fe(2)O(9+δ) nanobelts which are isostructural with the high-temperature superconductor Bi(2)Sr(2)CaCu(2)O(8+δ) are successfully grown by a hydrothermal method....

متن کامل

High Pressure Experimental Studies on CuO: Indication of Re-entrant Multiferroicity at Room Temperature

We have carried out detailed experimental investigations on polycrystalline CuO using dielectric constant, dc resistance, Raman spectroscopy and X-ray diffraction measurements at high pressures. Observation of anomalous changes both in dielectric constant and dielectric loss in the pressure range 3.7-4.4 GPa and reversal of piezoelectric current with reversal of poling field direction indicate ...

متن کامل

Room Temperature Multiferroicity of Charge Transfer Crystals.

Room temperature multiferroics has been a frontier research field by manipulating spin-driven ferroelectricity or charge-order-driven magnetism. Charge-transfer crystals based on electron donor and acceptor assembly, exhibiting simultaneous spin ordering, are drawing significant interests for the development of all-organic magnetoelectric multiferroics. Here, we report that a remarkable anisotr...

متن کامل

Airtight metallic sealing at room temperature under small mechanical pressure

Metallic seals can be resistant to air leakage, resistant to degradation under heat, and capable of carrying mechanical loads. Various technologies--such as organic solar cells and organic light emitting diodes--need, at least benefit from, such metallic seals. However, these technologies involve polymeric materials and can tolerate neither the high-temperature nor the high-pressure processes o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Physical review

سال: 2021

ISSN: ['0556-2813', '1538-4497', '1089-490X']

DOI: https://doi.org/10.1103/physrevb.103.214432